Meet the Dyne Team - The Faces Behind the Reports - June 2017

Dyne Technologies is proud of our talented and integral staff. The June 2017 newsletter article Meet the Dyne Team - The Faces Behind the Reports is formatted as a web page with look at some the faces behind the reports and a little bit about each of us. Click on the link above to visit the web page or go the About Us tab and you will find the link there.

read more ...

New Film Formation Reporting Format at Dyne - May 2017

All film forming foams, such as aqueous film forming foams (AFFFs) and film forming fluoroproteins, are required to form a film during the annual quality testing. The film is an extra barrier of protection in addition to the foam blanket that is designed to form when using these products. It involves a fluorosurfactant aqueous layer forming on top of the fuel to separate the fuel from the ignition source (videos of this phenomenon can be seen at dyneusa.com/videos). In contrast, non-film forming foams, such as standard proteins, solely rely on their foam blanket to smother the fire. Since film forming foam was designed, tested, and listed with this film formation in mind, it is required to demonstrate this same level of performance during the periodical testing.

read more ...

Understanding Sprinkler Appearance Test Results - April 2017

When testing sprinkler heads, Dyne Technologies, LLC conducts an appearance test on each head. The appearance test looks for the presence of any loading, corrosion, paint, and/or damage specifically on the release mechanism, water seal, and deflector. Each of these can result in the sprinkler head failing to perform properly, either by not releasing in an appropriate time or by changing the spray pattern once released (NFPA 25 2017 Edition Section A.5.2.1.1). The results of the appearance test are important because they can help identify potential issues with sprinkler heads. Below is a closer look at each part of the appearance test and what Dyne looks for.

read more ...

IMO 1312 Requirements for Alcohol-Resistant Fluoroprotein & Protein-Based Foams - March 2017

In October 2007, the International Maritime Organization (IMO) Sub-Committee on Fire Protection released a formal proposal to amend MSC/Circ. 799 due to concern regarding the ability of alcohol-resistant (AR) protein-based foam to perform effectively on alcohols or other polar solvents. These proposed amendments, among many others, were approved and released by the IMO Maritime Safety Committee in June 2009 in the “Revised Guidelines for the Performance and Testing Criteria, and Surveys of Foam Concentrates for Fixed Fire-Extinguishing Systems,” which can be found in the annex of MSC.1/Circ.1312. These revisions require alcohol-resistant and protein-based (including AR fluoroprotein-based) concentrates to be annually subjected to a small-scale fire test as well as a stability test with acetone.

read more ...

When Sprinkler Heads are Out of Specification - February 2017

*UPDATE: As of April 2017, Dyne Fire Sprinkler Head Test Report’s now reflect when a sprinkler passes or fails a requirement.”, see the Sprinkler Head Sample Report for an example. 

*UPDATE: As of March 2017, Dyne will no longer be checking heads for recalls, see the Blog article for more details.

It is important to send in a sample of sprinkler heads to be tested by a recognized testing laboratory such as Dyne Technologies to ensure that a sprinkler system will work properly in the event of a fire.  Dyne completes an appearance inspection as well as a test of the response time of the sprinkler heads received in our laboratory.  In addition, Dyne will check the sprinkler head to ensure it is not part of a sprinkler recall.*  Any test that does not meet the National Fire Protection Agency (NFPA) 25 requirement will show up as “Out of Specification” on the test report.

read more ...

Dry Sprinkler Head Testing Now Available at Dyne Technologies - January 2017

Dyne Technologies, LLC is pleased to announce that dry sprinkler head testing is now available, in addition to the sprinkler head testing service that we introduced on December 1, 2016. As with its existing services, Dyne will offer guaranteed turnaround time, online reports, accurate and reliable results and unparalleled customer service.

Along with testing, we are also introducing a test kit for dry sprinkler heads which will be available in two adjustable sizes. Each kit will be able to hold one dry sprinkler head—the smaller size adjusting to fit a head up to 20”, and the large fitting a head from 21” to 42”. Dyne will pay the shipping for the kits to you, however because of the variability in the size and weight of dry sprinkler heads, customers will be responsible for shipping costs back to Dyne Technologies. There is a cost associated with these kits: $10 each for the smaller size, $12 each for the larger; the pricing for testing will remain the same as with our standard sprinkler head testing.

read more ...

Sprinkler Head Testing Now Available at Dyne Technologies - December 2016

*UPDATE: As of April 2017, Dyne Fire Sprinkler Head Test Report’s now reflect when a sprinkler passes or fails a requirement, see the Sprinkler Head Sample Report for an example. 

*UPDATE: As of March 2017, Dyne will no longer be checking heads for recalls, see the Blog article for more details.

Dyne Technologies, LLC is pleased to announce its new testing service – sprinkler head testing. The NFPA 25 Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems requires that field sprinkler heads be either tested or replaced at periodical time frames. Dyne is adding this testing service to its well-established offerings of firefighting foam and antifreeze testing. As with its existing services, Dyne will offer guaranteed turnaround time, free test kits and shipping (within the continental United States), on-line reports, accurate and reliable results and unparalleled customer service.

read more ...

Understanding Foam Results Series - Film Formation & Spreading Coefficient - September 2016

All film forming foams are required to demonstrate their film forming ability during the periodical testing. Film forming foams include aqueous film forming foams (AFFF), alcohol resistant AFFF (AR-AFFF), film forming fluoroproteins (FFFP), and alcohol resistant FFFP (AR-FFFP). The film described by their names is an aqueous film that forms on the surface of the flammable liquid. This is possible because these foam concentrates contain surfactants. Surfactants are chemicals that alter the surface properties of water, which can, depending on the surfactant(s) used, allow for the thin layer of film to be formed over the fuel. This film isolates the fuel from the oxygen and ignition source even when the foam blanket is removed. Foams such as regular proteins or high expansion foams are not designed to have this film feature and rely solely on their foam blanket.

read more ...

Understanding Foam Results Series - pH - August 2016

The pH is tested on every fire-fighting foam concentrate sample sent to Dyne Technologies.  The pH can help indicate the condition of the foam concentrate.  For samples tested to NFPA 11, pH is not a measurement of performance and will not cause a sample to fail.  However, a concentrate being tested to International Maritime Organization (IMO) Specification MSC 1312 and NFPA 18 Standard on Wetting Agents requires foam concentrate to have a pH within a set range to be acceptable.

read more ...

Understanding Foam Results Series - Viscosity - July 2016

The viscosity of firefighting foams are measured if they are thick in nature – typically alcohol resistant (AR) foams. This physical property can be critical to ensuring the foam has maintained its alcohol resistance properties. It can also offer insight into potential problems, such as dilution or polymer separation.

What is Viscosity?

Viscosity is the measure of internal friction. Simply put, it measures how much resistance an object would have when traveling through a sample. The more viscous a sample, the more resistance there is to an object traveling through it. This friction applies to how the foam will move through your proportioning equipment. The more viscous the sample is, the slower it will move through the system. This gives rise to the need for listed equipment and flow rates for each firefighting foam.

read more ...

Understanding Foam Results Series - Density - June 2016

The density is determined on all firefighting foam samples that are tested at Dyne. The density on a Dyne report is the amount of mass per given volume (g/mL). It is an important physical property that can quickly help identify any potential problems that might be occurring with the foam.

What is Density?
Density is defined as a quantity per given space, in other words, how much material is in a defined spaced. Most commonly, the density is reported as a mass per given volume as the quantity and space, respectively. To determine this density, you can measure the mass of a specific volume or vice versa (measure the volume of a specific mass). The calculated density would simply be the mass divided by the volume. At Dyne, we report the density with the units of g/mL which comes from this division – the amount of mass (g) per volume (mL). For example, the density of water at room temperature is about 0.998 g/mL. That means that if we poured out 1 mL of water, the mass of that water would be 0.998 g.

read more ...

Conductivity Proportioning Test and Handheld Refractometer Rental Kits

Dyne Technologies is now offering two new types of rental kits for in-field use.  First, a conductivity rental kit with everything that is needed to estimate the percent concentration of foam in premix solution in the field. Because of the quick results, adjustments are easily completed in the field. See the kit description below.

read more ...

Understanding Foam Results Series - Refractive Index

Refractive index is an effective and important physical property that can give insight into the quality of a firefighting foam, premixed solution, or bladder water sample. The refractive index is a measurement of the angle in which light bends as it passes through a substance and is proportional to the amount of solvent present in a sample.

read more ...

Understanding Foam Results Series - Appearance, Mineral Oil, and Sediment Testing

Dyne Technologies performs various physical property tests in order to better understand a firefighting foam sample. An important physical property that can tell us a lot about a sample is the appearance, which is the description of the color, consistency and the visible presence of sediment and particles.

read more ...

How Firefighting Foam Storage Impacts Your Annual Results

Maintaining proper storage conditions is vital to ensuring the lifespan of firefighting foam. Each foam manufacturer has recommendations in their product’s technical datasheet that typically discuss storage material, storage temperature, and any other special considerations for storing the foam. Understanding how each of these items impacts the foam can help identify potential problems before they happen.

read more ...

Quality in the Lab

At Dyne Technologies, we take the quality of our service very seriously.  Using our vigorous testing and approval processes, we monitor all results to confirm that the results are precise and accurate.  We are an ISO 9001:2008 certified laboratory.

read more ...

Flammable Liquids and Foam

It is imperative that your fire-fighting foam is matched to your hazard. Only certain types of foam, proportioned at a specified concentration, will extinguish water soluble flammable liquids.  Click on the PDF link below to take a look at a list of common flammable liquids and the type of foam that is required to protect them. 

read more ...

Annual Inspection & Testing Changes to the New Edition of NFPA 11

As of September 7th, 2015, the 2016 edition of NFPA 11: Standard for Low-, Medium-, and High-Expansion Foam was approved as an American National Standard. This new edition, which replaces the 2010 Edition of NFPA 11, has several changes that addressed areas of concern that arose since that last addition. The committee stressed that some piping requirements have been addressed, more environmentally friendly on site proportioning testing has been recognized, and acceptance criteria for the annual testing of foam concentrates has been clarified. Dyne Technologies would like to highlight some of the changes that affect the annual inspection and testing of your foam systems.

read more ...

Physical Properties - What Do They Mean and Why Do We Test Them

You may notice on Dyne test reports that the test categories are grouped into physical properties and performance properties. Physical properties tested on all foam and premix solution samples include Appearance, Refractive Index (if applicable), pH, Density, and Viscosity (if applicable). The physical properties are not a measurement of performance and will not typically cause a sample to fail, with the exception of extremely low viscosities on AR-AFFF samples and out of spec pH results for foam tested to the International Maritime Organization (IMO) specification. The data provided by the physical properties is very valuable, as it gives information about the quality of the foam and how the foam has changed since first manufactured.

read more ...

Ensure Your Antifreeze Solution is in Compliance with NFPA 25 - as seen in the September Edition of FPC

Water-based fire protection systems that use antifreeze solution need to be inspected, tested and maintained regularly in order to ensure performance. NFPA 25: Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, 2014 Edition requires any water-based piping exposed to temperatures below 40 degrees Fahrenheit to use antifreeze solution and recommends the following.

read more ...

Understanding High Expansion Foam

All firefighting foams work to suppress fires using the same concept, however, different types of foams have different properties that are designed for different applications in the field.  Dyne technologies is able to test these different types of firefighting foam, including high expansion foam.

read more ...

Fluorochemicals in Firefighting Foam and the EPA

The United States Environmental Protection Agency (US EPA) is encouraging manufacturers to phase out of manufacturing the larger chain synthetic fluorinated chemicals in favor of fluorochemicals with six or less carbons-the smaller chain fluorochemicals are considered to be more environmentally friendly.  Understanding what this change means, the history behind it, and how it affects the firefighting foam industry will make this transition a lot easier.

read more ...

Why Fire-Fighting Foam Fails

Receiving failed sample results from Dyne can be stressful. It might lead to having to investigate or replace either the foam, equipment, or both which can involve a lot of time and money. Having a clear understanding of why a sample failed will help save time in figuring out how to resolve the issue. It can also save you from mistakenly replacing good foam when the equipment is to blame. Understanding common causes of foam failure will help eliminate any issues that can be dealt with before sending your samples to Dyne as well. Common reasons for foam failure include dilution, age, improper storage conditions, mixing incompatible foam, and improper sampling technique.

read more ...

NFPA or IMO Foam Testing - Which is Right for You

Filling out the paperwork for a sample of firefighting foam to send into Dyne for testing can be confusing if you are unfamiliar with some of the language or testing methods used in the firefighting foam business. One choice that must be made is if the sample must be tested to International Maritime Organization (IMO) or National Fire Protection Association (NFPA) specifications. IMO and NFPA have similar standards for firefighting foam testing except IMO stipulates a slightly more rigorous analysis.

read more ...

Your Foam is Not Proportioning Properly - A Troubleshooting Guide

The National Fire Protection Association (NFPA) “Standard 11 Low- Medium- and High-Expansion Foam” recommends a foam system proportion at no less than the rated concentration and no more than 30 percent above the rated concentration. Note, this same criteria is also a requirement of Underwriters Laboratory (UL) specification 162 “Foam Equipment and Liquid Concentrates”. Table 1 provides a list of acceptable concentration ranges for typical foam concentrates meeting the NFPA and UL recommendations.

read more ...

What Type of Foam Do I Have

Knowing what foam you have is vital to the safety of the lives and property you are protecting. The type of foam used must be able to protect against the hazard present. When submitting a sample to Dyne, mislabeling the type of foam can lead to false results. To help better assist you in knowing your foam and getting it tested appropriately, below is a summary of the common foam types which are tested at Dyne.

read more ...

Proportioning Testing of Firefighting Foam

Verifying that a firefighting foam system accurately proportions foam and water is critical to the system’s effectiveness in the event of a fire. If the premix solution is mixed too lean—not enough foam concentrate and too much water—it may not be able to extinguish the fire. If the premix solution is mixed too rich—too much foam concentrate and not enough water— there is a risk running out of foam before the fire is fully extinguished.

read more ...

Bladder Water Testing

Bladder tanks are commonly used to store and proportion foam concentrate in foam systems. A bladder tank consists of a carbon steel tank with an inner elastomeric bladder. Foam is stored inside this bladder while water is directed through piping to the area between the steel tank and the bladder. The resulting water pressure is used to force the foam out of the bladder and into a controller which then mixes the correct concentration of foam (which is typically 1 to 6 percent) into the water.

read more ...

Mineral Oil Determination Test

Mineral oil is sometimes added to the top of alcohol-resistant aqueous film forming foam (AR-AFFF) by the manufacturer to prevent evaporation of the solvent in the foam concentrate. Most often, mineral oil sits on the top of the container that foam concentrate is housed in. If a sample of the foam concentrate is taken from the top of the container, but care is not given to take the sample under the mineral oil layer, annual testing can result in failing results.

read more ...

Antifreeze Testing Before Winter

Colder temperatures are on their way throughout much of the United States and with colder temperatures comes new challenges to maintaining and protecting your water based fire protection systems. These systems must be in compliance with NFPA® 25 – Standard for the Inspection, Testing and Maintenance of Water-Based Fire Protection Systems - and Dyne Technologies is here to help with your testing needs.

read more ...

Antifreeze Explanation LBTR-4067

Physical Properties

The physical properties described below are tested on antifreeze solutions sent to Dyne Technologies. The physical properties are not a measurement of performance and as such will not cause the sample to FAIL. If the value is outside of the specification, it is simply noted as OUT OF SPEC.

read more ...

Letter Defining Testing Changes

Changes to Foam Testing Specifications

The National Fire Protection Association Standard 11 entitled Standard for Low-, Medium-, and High-Expansion Foam is in the 2014 fall revision cycle at NFPA. As such, several key process steps have been completed to move this standard from the 2010 version to the new 2014 version. The new revision should be issued this fall. The first draft of the new version was issued in September of 2013; and the posting of the second draft and the technical committee ballot is scheduled for June 13, 2014.

read more ...

Tips On Proper Sampling

A Few Things to Consider when Sampling Foam

Ensuring a representative sample of the firefighting foam that is taken and sent to Dyne is essential in ensuring safety, receiving a quick and accurate result turnaround, and to limit future retesting expenses.

read more ...

NFPA® 25 2014 Edition Changes

The National Fire Protection Association (NFPA®) has released the 2014 edition of NFPA® 25 – Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems. The 2014 edition of NFPA® 25 has many changes since the last edition. Dyne Technologies is highlighting the changes that are in relation to foam and antifreeze solutions to ensure our customers are aware of the new standard, and help them understand the impact of these changes. Please note, this article does not identify all the changes to NFPA® 25. If you have any questions regarding this standard, view the standard at www.NFPA.org.

read more ...

Understanding Class B Fire-Fighting Foam and Application

In an emergency flammable liquid fire situation, reliance on safety personnel, local police and fire departments, and foam performance are required for a successful fire knockdown. Training is commonplace for safety officials but foam testing is overlooked in many fire departments across the country. As specified by NFPA 11: Standard for Low-, Medium-, and High Expansion Foam, fire-fighting foam should be tested at least annually by the foam manufacturer or an independent laboratory. Poor performance of fire-fighting foam may be caused by water dilution, tank corrosion or failure to follow the manufacturer’s tank and sample requirements. For these reasons, it is recommended that safety personnel fully understand the basics of fire-fighting foam and that foam testing should be conducted at least annually, to ensure the best performance when it is needed most.

read more ...